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Who Am 1?

« Current research focus
— High-order methods for coupled THMC processes in geosystems

* PhD in Aerospace Engineering with Minor in General Mathematics

* Research interest
— Computational fluid dynamics and heat transfer
— High performance computing with GPU
--- Now ---
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Code Description

FALCON code
Stands for Fracturing And Liquid CONvection

Built based on INL's MOOSE framework

Physics-based, massively parallel, fully-coupled, finite element model for
simultaneously solving multiphase fluid Flow, heat transport, and rock
deformation for geothermal reservoir simulation

Collaborative efforts
INL: Derek Gaston, Cody Permann, Mitch Plummer
U. of Utah: Luanjing Guo, Jacob Bradford, Raili Taylor, Surya Sunkavalli
Others: CSIRO, U. of Western Au., U. of NSW, U. of Auckland

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 3


http://www.mooseframework.com/
http://www.mooseframework.com/
http://www.mooseframework.com/

9
wlb Idaho National Laboratory

MOOSE Project BoWvonine G SNV ﬂsu .

nnnnnnnnnn

 MOOSE is an object-oriented FEM
framework allowing rapid development
of new simulation tools. Meets NQA-1

requirements. Universityofldaho

+ Application development focuses on _ 4
implementing physics rather than ﬁa?_dlal Argonne ¥
numerical issues. _ _ EGI laab:,‘:';i‘o,ies

- Leverages multiple DOE and university @ ESE
developed scientific computational tools . AECL

Framework
* Mesh

« Used by multiple national labs, " FAC
universities and industry partners L
— ~25 applications build on the

framework g Los Alamos

NATIONAL LABORATORY
EST.1943

COLORADOSCHOOLOFMINES ~ £4 usuviersizy o
0 o A - Wil SOUTH(AROLINA., ~
TEXAS A&M mmm  Massachusetts e
AT& UNIVERSITY ANATECH IIlII |ﬂ:§f§te:§e UNM
Technology
. ‘e

National Nuclear Laboratory..C % CENERAL ATOMICS T\ y
. | MICHIGAN |
v i THE UNIVERSITY i—,\/ﬁ_\—,

Pacific Northwest
NATIONAL LABORATORY

Studsvik PonnGraie

"} WISCONSIN

MADISON

FHENEAMS

NUCLEAR ENERGY ADVANCED MODELING & SIMULATION PROGRAM



q..“_b Idaho National Laboratory
General Capabilities of MOOSE

1D, 2D, and 3D
User code agnostic of dimension
Finite Element Based, C++
Continuous Galerkin
Discontinuous Galerkin
Fully Coupled/Fully Implicit, “Tight” and “Loose” Coupling Capabilities
Unstructured Mesh
All shapes (Quads, Tris, Hexes, Tets, Pyramids, Wedges...)
Higher order geometry (curvilinear, etc.)
Reads and writes multiple formats
Mesh and Timestep Adaptivity
Parallel
User code agnostic of parallelism
High Order
User code agnostic of shape functions
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Solution Framework

Normalized Linear Residual

MOOSE is based on a Jacobian-Free Newton-Krylov (JFNK) nonlinear solution scheme

JFNK is ideally suited to solution of large multiphysics systems:
Lack of need for Jacobian saves space and time
No need to find perfect analytic derivatives (which can be difficult or impossible)

All physics are solved simultaneously in a fully implicit, fully coupled manner
Allows for large time steps

MOOSE handles all coupling, simultaneously converging all equations
JFNK uses a Krylov solver and still needs preconditioning
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Background

Main numerical methods for THMC processes in geosystems

Finite Difference (FD)

[0 Simple to implement, fast, high-order is feasible
[ Rigorous requirement in mesh quality; not robust for complex geometries

Finite Volume (FV)

[0 Locally conservative; robust and fast; complex geometries
[ Loss of accuracy in non-conforming mesh and adaptive mesh refinement

Finite Element (FE)
[0 High-order accuracy and complex geometries
[ Suited for multi-physics coupling e.g., fluid-solid
[0 Not well suited for problems with direction, e.g., hyperbolic-type PDEs

No single numerical method can perfectly handle all aspects of THMC! J
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Background (cont.)

- Example: 1D transport of a steep thermal front with FE
— A minimal representation of cold fluid injection into a hot fractured zone

O FE (P1)
o 2"d-order linear polynomial
O BDF1 - Backward Difference
o 1st-order time integration
0 CN2 - Crank-Nicolson

o 2"d-order time integration

Time: 0.000000

T 1
08 1

Time: 0.000000 ' 02

04 0o
X-coordinate

= Strong non-physical oscillations near thermal front
» High-order temporal scheme retains oscillations in a wider region
» Lower-order temporal scheme dissipates the errors, but also decrease accuracy

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 8
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Background (cont.)

Exemplary stabilization approaches in the context of FE
Streamline Upwind Petrov Galerkin (SUPG), with discontinuity capturing

1.2

—— FE (P1)- BDF2
1.4 SUPG (P1)- BDF2
= SUPE (P1)with DC - BDF2
D;_ QO Can significantly stabilize transport, but still
osd with over- and under-shoots near the front
0.74
061 O Formulation strongly depends on the original
051 PDESs, not easy to be modulated
0.4+
0.3 Q Parameters for tuning
0.2+
o] O Alternative FEMs?
0- o Flux-Corrected Transport (FCT)-FEM
ol o Edge-based FEM
s | o Entropy Viscosity Method (EVM)
0 0z 0.4 0.6 0.8 1
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Motivation

* A non-oscillatory and accurate thermal front tracking technigue based
on an accurate, robust and flexible numerical method

An oscillation-free solution for
the 1D scalar linear advection: di/dt + dli/dx =0

with gridisize: h=1/100
Copyright: Yidong Xia, Idaho National Laboratony

We propose a class of “reconstructed discontinuous Galerkin” methods — rDG,
that combine the advantages of both Finite Element and Finite Volume methods
for thermal and hydraulic modeling and simulations in geothermal reservoir

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 10



—~.
m Idaho National Laboratory

What is Discontinuous Galerkin (DG) Method?

* DG is a variant of the standard (continuous) Galerkin FE method

— Continuous FE requires continuity of the solution along the
element interfaces (edges).

— DG does NOT require continuity of the solution along edges

- W

I I I | I [
Finite Element Finite Volume

Discontinuous Galerkin

* DG has more degrees of freedom (unknowns) to solve than FE

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 11
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Features of Discontinuous Galerkin Method

 Why DG?
— Well suited for complex geometries and non-conforming meshes.
— Adaptive mesh refinement is easier to implement.
— Compact and highly parallelizable

* Why not DG?
— High computational costs (more DOFs for each element)

* More computing time
* More storage requirement

Later on | will prove that this is not J
truet

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 12
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Choices of Basis Functions: nodal DG

* The DG solution is often represented by the Lagrange basis functions

N
U»Uh=é_UJ.Bj

Q1/P1 Q2/P2

— In the case of linear basis, unknowns U; happen to be on the vertices.
— Polynomial solutions depend on the shape of elements.

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 13
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Choices of Basis Functions: modal DG

» Taylor series expansion at the cell centroid, e.g., a P2 polynomial

U,=UB +UB,+U B,+UB,+U B;+U B;+U_B,+U B, +U_B,+U B,

— The unknowns are cell-averaged variables and their 1t and 2"d derivatives

B =1 B,=x-x, By=y-y., B,=z-z,

B; 32 B? 32 B: B2
B, =—2- B, =—- B,=—-| —Ld
2 W 2 aW 2 W2 W

B,=B,B,- IW B,B,dW B, = B2B4 i j o BBy AW B = BB, - IW B,B, dW

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 14
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Features of the Taylor-basis DG

« Same approximate polynomial solution for any shape of elements:
— Easy to implement on arbitrary shapes of grids

- Handily available cell-averaged variables and their derivatives
— Easy to implement limiting / discontinuity capturing techniques

A type of hierarchical basis
— Easy to implement p-multigrid and p-adaptivity

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 16
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A Generic Convection-Diffusion Equation

« Strong form
oU(x, t)
Ot

+V-(VU(x, 1))- V-V(DU(x, 1))- F=0
withU, =U(x, 0)at =0

— U —the variable of interest, e.g., species concentration for mass
transfer, temperature for heat transfer

— V — the average velocity that the quantity is moving

— D — the diffusivity

— F — the “source/sink” term

* A linear case
oU(x, t)

> +V-VU(x, {)- DV-VU(x, t)=0

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 17
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Discontinuous Galerkin Discretization

 Weak form

d
—J o UiB, dQ+ fre(VUh)-nBl. dlj—fge(VUh)VBi dlj— freDVUh ‘nB, er + fQHDVUh -VB, drl =0
Conv. I\?race Int. Conv. D(;fmain Int. Diff. F;lfce Int. Diff. D0\1;1ain Int.
I<sisN

— N — the dimension of the polynomial space
— B, — the basis of polynomial function of degree p

+ Treatment of non-unique interface fluxes
— Upwind or solve a Riemann problem like in the case of Finite Volume

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 18
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Taylor-Basis DG Formulation

- Take another look at the weak form, e.g., DG (P2)

v\/@‘;[j+jGe(VUh)-nd2fGeDVUh-ndG:o, i=1

DG(PO) — nothing but the 1%-order Finite Volume J

. Baaw] Yu,u,u.u

T
R| = 2<i7<1
99 dt w? Uyz} +[ ] 0, ;,j <10

9x1 -

u,, U

zz!

uU,,U

xz!

— The cell-averaged variable is decoupled from the derivatives
| BBaw=0, 2<i<10
W,

— Finite Volume becomes a subset in Taylor-basis DG formulation!
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Hierarchically Reconstructed DG — rDG methods

A few of the rDG methods in the present study:

rDG (POP1): 2"d-order in space
Step 1. Reconstruct the 1st derivatives based on PO solution
Step 2. Limit the 15t derivatives using compact WENO reconstruction at P1

rDG (P1P1): 2"d-order in space
Step 1. Limit the 15t derivatives using compact WENO reconstruction at P1

rDG (P1P2): 3"9-order in space
Step 1. Reconstruct the 2" derivatives based on P1 solution
Step 2. Limit the 2"d derivatives using compact WENO reconstruction at P2
Step 3. Limit the 15t derivatives using compact WENO reconstruction at P1

------ WENO: Weighted Essentially Non-Oscillatory schemes ------
Refer to the paper for the mathematical description in detail

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 20
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Numerical Experiments

* Meshes for the first two examples

— 3D simulation of 1D problems on hexahedral grids
— Domain bounded by (x, vy, z) = ([0, 1], [0, 0.01], [0, 0.01])

* High-order time integration schemes are applied
+ All the examples are conducted in the 3D coordinate system

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 21
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Example 1. Gaussian Hump in 1D
* A nonlinear wave profile advected by the transport equation:
U(x, O):exp(- b(x - xo)z) for x1 [0,1]

— The damping coefficient 8 = 200, and the initial location x, = 0.2. All the
computations were started at t, = 0 and terminated at t = 0.6.

=
N

00000000
RPoRNMWhUIONDOR R

000000000 |
RPoRrNMWRUIONDOR R

'
=

U
.
© o0ooocooocoo0
RoRNWhUIONDOR R

.
©

0 0.1 0.2 0.3 0

Initial conditions represented by exact linear DG solution for h = 1/25, 1/50 and 1/100.

* Objective: error analysis on a smooth convective problem
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Example 1. Gaussian Hump in 1D (cont.)

- Spatial error analysis

0.01 0.01
~
L = \0\
A I
0.001 [ x 0.001 |- T
—~ o — L~..I“'.
£ S €
o X o BRL
< P < Y
~  0.0001 i ~  0.0001 it
=) =) =
> o B
o FR o Y
1e-05 i 1€-05 b S
. DG(P0)+RK3 —— DG(P0)+RK3 ——
RDG(POP1)+RK3 " RDG(POP1)+RK3
. DG(P1)+TVDRK3 % . DG(P1)+TVDRK3 ---x---:
RDG(P1P2)+TVDRK3 &~ RDG(P1P2)+TVDRK3 &=
1e_06 i i R S S | i 16'06 1 1 1 1 1
0.001 0.01 0.1 0 100 200 300 400 500 600 700 800
Log(h) Nelem
Log(L?-norm) vs. Log(h) Log(L?-norm) vs. Nr. of elements
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Example 2. Step Function in 1D

* Initial conditions

Left state: U=10, V=(14,00) forx£0
Rightstate: U=0, V=(,0,0) forOEx£1
 Analytical solution to this initial-value-problem

! & (x-Vt- x)0
U(x, )= O——€X X ~d X
(1) wNA4pDt pg—

1.1 T
N B o e o o o o o o o b o o o o e o o o e o o e Pe = 10 —+—
O E e Pe= 100 -
0.8 [y - Pe =1000 —+—
0.7 e
06 |t -
D 05 [ X
O e s K
0 T s X
0.2 [ I
0.1
0F— ittt
01 i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-coordinate

- Useful notations: DG(P0) | rDG(POP1) | DG(P1) | rDG(P1P1) |
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Example 3. Transport of Square Wave in 2D

* Quadrilateral meshes

nee 1.2+
TFIE :'; 0-00?550 =X=FE (P1)-CN2
( 2 . —— DG (PO)-CN2
: DG (P1)-CN2
—8- DG (FOP1)- CN2
H xpsssssss
I
1
0.5 '
1
0.8 1
1
1
0.7 .
1
o 00 I
E 1
I
8 03 .
5 i
= 044 |
I
0.3 !
1
I
0.2 .
I
0.14 !
0
0.1
0.2 T T T T T T
0 0.2 0.4 0 1 12

0.6 B
Diagonal distance from origin
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Example 3. Transport of Square Wave in 2D
(CI%QnthIar meshes

1.2+
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1 4 _
I [
1 P
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0584 i I
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1 |
0.7 1 1
| I
o 00 1 i
= 1 (]
E 051 : I v
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] I
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. ]
I |
0.24 I' |
1 |
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Example 4. Cold Water Injection in 3D

* Injection of cold water through a fractured rock zone
— Designed Peclet number = 1000 (strongly convective)
— Domain bounded by (x, y, z) = ([-0.5, 0.5], [-0.5, 0.5], [-0.5, 0.5])
— Pressure-temperature based thermo-hydro formulation in porous media

a_r+v.[_ /‘EVPJZO
ot m

[Fre,+Q- f)rrcr]%—f— V-(K,Vp)+e.q-VT=0
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Example 4. Cold Water Injection in 3D (cont.)

* Pressure gradient-induced thermal transport of cold water in a hot
fractured rock zone

N NN N

12 FE (P1) 1om SUPG (P1) 12 tDG (POP1)

0.8 0.84 0.8+
H 3 3

0.6-| g 0.6 0.6
g 0.4 g 0.4 E 0.4

0z 0.24 02

0 0 0
0.2 - 0.2 T | 02 T T
4] 02 08 1 0 02 08 1 0 02 08 1
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Conclusion

A class of reconstructed discontinuous Galerkin methods for thermal
and hydraulic (TH) modeling and simulation in porous media

Effective thermal front tracking without non-physical oscillations
Sufficient accuracy

Limitations
Solid mechanics (Finite Element is still the choice here)

Future work
two-phase flow (water and steam)

Chemically reactive transport (hyperbolic-type equations)

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 31



e
m ldaho National Laboratory

Acknowledgment

This work was supported by the U.S. Department of Energy, under a
DOE Idaho Operations Office Contract. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free license to publish or

reproduce the published form of this contribution, or allow others to do
so, for U.S. Government purposes.

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 32



